반응형

【 아두이노Proj#8 사륜구동 4WD 블루투스 RC카 만들기~! (with 모터쉴드)

 지난시간, 블루투스모듈을 이용한 통신을 학습하였다. 또한 미니카도 만들어 제어해보았는데, 이제 이 것들을 종합해서 업그레이드 해보도록 하자! 

 바퀴 4개를 이용하여 4륜 구동으로 만들고 아두이노 프로미니로 소형 리모컨을 만들어 무선제어를 한다면, 교육적이고 멋진 아두이노 장난감을 만들어 낼 수 있다.  여기에 Adafruit 사의 모터쉴드를 이용하면, 별다른 선연결도 없이 간단히 4개의 DC모터를 제어할 수 있다.

Let's get it~!

 

▶ 선수 학습 :

    1. [아두이노 모듈#16] 아두이노... 블루투스통신 (블루투스 설정법 참조) ☜ (클릭)

    2. [아두이노 모듈#18] 아두이노... 블루투스통신 (블루투스 제어법 참조) ☜ (클릭)

    3. [아두이노 모듈#22] Adafruit의 4채널 모터쉴드(모터쉴드 사용법 참조) ☜ (클릭)
    4. [아두이노 ProMini#2] 초소형 블루투스 리모컨 만들기(리모트 컨트롤러 참조) ☜ (클릭)

 

▶ 실습 목표 :  

 1. [ Adafruit 모터 쉴드의 사용법을 익힐 수 있고 4개의 DC모터 제어를 할 수 있다.] 

 2. [ 조이스틱의 컨트롤 기능을 익힐 수 있다.  ]

 3. [ 블루투스 모듈의 셋업과 페어링(연결) 및 사용법을 익힐 수 있다. ]

 4. [ 아두이노 두 대 상호간 통신을 통해 제어하는 방법을 익힐 수 있다 ]

 

▶ 실습 회로도면 :
  (이미지 클릭하면 확대 가능)

[1.  사륜 구동 본체 연결도]

[2. 블루투스 리모컨 연결도]

- 1. 우노 리모컨

우노(나노)보드 조이스틱 조정기 연결도

- 2. 프로미니 리모컨

프로미니 보드 조이스틱 조정기 연결도

※ 블루투스 페어링(자동 연결)을 위해서는, 선수학습 1번을 통해 블루투스 설정법을 확인하여, 본체에 있는 블루투스 모듈은 슬레이브로(Slave)로 설정하고, 조이스틱 조정기의 블루투스는 마스터(Master) 설정 작업이 필요하다.  
(물론 마스터와 슬레이브가 반대로 바뀌어도 상관이 없다)

  - 선수학습을 참고하면 좀더 상세하게 조이스틱 컨트롤로(조정기) 회로를 조립할 수 있다.

  - 우노회로나, 프로미니 회로 모두 같은 코드를 사용하니 상황에 따라 적합한 것을 선택할 수 있다.

 

▶ 실습 절차  :  

1.   부품을 준비하여 위와 같은 회로를 각각 구성한다. 

   -  사륜카의 베이스 판은 아크릴 판 혹은 MDF 등 주변에서 쉽게 구할 수 있는 것으로 사용해도 무방하다.

   -  여기서는 3D 프린팅으로 출력한 것을 베이스로 사용하였다.

   -  모터와 베이스를 연결하는 적합한 나사가 없을 경우, 두꺼운 양면테잎 혹은 글루스틱으로 부착하여도 무방.

   -  3.7V 베터리 2개를 직렬연결 해주면, 충분한 전류가 공급되어 힘있고 빠르게 구동된다.

2.   아래 코드를 작성하고 각각의 프로그램을 로딩 후 실행시킨다.

 

 

▶ 프로그램 코드 및 설명  : 

 

【 코드1-본체 

#include  <AFMotor.h>            // Adafruit 모터 쉴드 라이브러리 사용
#include  <SoftwareSerial.h>    //블루투스 통신을 위한 기본 헤더 선언
                                 
SoftwareSerial BTSerial(2, 3);  // 블루투스 모듈과 통신을 위한 아두이노 연결핀(TX = 2 , RX = 3)
//모터의 전후좌우 방향을 컨트롤하는 PIN번호를 상수로 선언
AF_DCMotor MOTOR1(1);     // 모터쉴드 M1 지정
AF_DCMotor MOTOR2(2);     // 모터쉴드 M2 지정
AF_DCMotor MOTOR3(3);     // 모터쉴드 M3 지정
AF_DCMotor MOTOR4(4);     // 모터쉴드 M4 지정
#define ActionTime 3000
/*  for (i=0; i <255; i++) {
    motor.setSpeed(i);
    delay(20);
  }
*/
void Stop_Release() {
  MOTOR1.run(RELEASE);
  MOTOR2.run(RELEASE);
  MOTOR3.run(RELEASE);
  MOTOR4.run(RELEASE);
  delay(20);
}

void Go_Forward() {
  MOTOR1.run(FORWARD);
  MOTOR2.run(FORWARD);
  MOTOR3.run(FORWARD);
  MOTOR4.run(FORWARD);
  delay(20);
}

void Go_Backward() {
  MOTOR1.run(BACKWARD);
  MOTOR2.run(BACKWARD);
  MOTOR3.run(BACKWARD);
  MOTOR4.run(BACKWARD);
  delay(20);
}

void Go_Left() {
  MOTOR1.run(FORWARD);
  MOTOR2.run(BACKWARD);
  MOTOR3.run(BACKWARD);
  MOTOR4.run(FORWARD);
  delay(20);
}

void Go_Right() {
  MOTOR1.run(BACKWARD);
  MOTOR2.run(FORWARD);
  MOTOR3.run(FORWARD);
  MOTOR4.run(BACKWARD);
  delay(20);
}

void setup() {
  BTSerial.begin(9600); //블루투스와 통신하기 위한 속도설정(모듈의속도 확인필요)
  Serial.begin(9600);   // 시리얼(모니터) 통신 속도를 설정
  MOTOR1.setSpeed(250);
  MOTOR2.setSpeed(250);
  MOTOR3.setSpeed(250);
  MOTOR4.setSpeed(250);
}

void loop() {
/* 기본 동작  
  Go_Forward();
  Stop_Release();
  Go_Left();
  Stop_Release();
  Go_Right();
  Stop_Release();
  Go_Backward();
  Stop_Release();
*/
  if (BTSerial.available()) {   // 블루투스로 신호가 있을 경우 실행되는 루틴
    char cmd = (char) BTSerial.read();   // 블루투스로 읽은 값을 char타입 변수에 저장
    Serial.println(cmd);  //cmd변수에 저장된 내용을 사용자가 `시리얼모니터`로 확인
    
    if ( cmd == 'f') {          //블루투스에서 'f'값이 들어오면 전진
      Go_Forward();
    } else if (cmd == 'l') {     //블루투스에서 'l'값이 들어오면 좌회전
        Go_Left();
    } else if (cmd == 'r') {     //블루투스에서 'r'값이 들어오면 우회전
        Go_Right();
    } else if (cmd ==  'b') {    //블루투스에서 'b'값이 들어오면 후진
        Go_Backward();
    } else if (cmd == 's') {    //블루투스에서 's'값이 들어오면 멈춤
        Stop_Release();
    }
  }
}

 

【 코드2-조이스틱 조정기 

/*  블루투스 조이스틱 조정기 만들기        */
#include  <SoftwareSerial.h>
SoftwareSerial BTSerial(2, 3);  // BTSerial(Rx, Tx)
int BTstates=0;       // 블루투스 신호 상태 저장용 변수
const int X_AXIS =0; //마우스 X 축 (A0)
const int Y_AXIS =1; //마우스 Y 축 (A1) 
int xVal=0;
int yVal=0;

void setup() {
  BTSerial.begin(9600);  
  Serial.begin(9600);
}

void loop() {  
  xVal=map(analogRead(X_AXIS),0,1023,100,0); //x축값 읽어 저장 
  yVal=map(analogRead(Y_AXIS),0,1023,300,200); //Y축값 읽어 저장
  
  // 모터 전진 //
  if (xVal >= 60 && yVal >= 225 && yVal <=275)  { 
    BTSerial.write('f');
    Serial.println('f');
  }
  
  // 모터 후진 //
  else if (xVal <= 40 && yVal >= 225 && yVal <=275)  { 
    BTSerial.write('b');
    Serial.println('b');
  }
  
  // 모터 좌회전 //
  else if (yVal <= 240 && xVal >= 25 && xVal <= 75)  { 
    BTSerial.write('l');
    Serial.println('l');
  }

  // 모터 우회전 //
  else if (yVal >= 260 && xVal >= 25 && xVal <= 75)  { 
    BTSerial.write('r');
    Serial.println('r');
  }

 else { 
    BTSerial.write('s');
    Serial.print('s');
  }
  delay(100); 
}

 

▶ 코드 다운로드 :

 (위 두 가지 코드 압축파일로 다운로드)

(PROJ03) 4WD_CAR.zip
0.00MB

 

위 코드에 사용된  AFMotor.h 라이브러리 첨부 :

Adafruit-Motor-Shield.zip
0.01MB

(만약 위 라이브러리를 다운 받아 추가 할 경우, 압축을 풀지말고, 아두이노 라이브러리 포함하기 메뉴에서 .zip 라이브러리 추가... 메뉴를 이용해서 추가해주세요. )

 

 

▶ 회로 제작/동작 영상 :

(YouTube : 1080P 고화질로 보기)

https://youtu.be/0tEaw29_dJc

 

(카카오로 보기)

 

 

프로젝트 제작에 사용된 3D 프린팅용 파일 :

1. Car 베이스
( 1. 아래는 본 영상에 사용된 Car-베이스 오리지널 출력 파일 입니다.
오리지널 파일은 고정용 나사 구멍이 뚫려 있습니다.)

아래 파일 출력 예상 이미지

 

ORIGINAL_chasis01.STL
0.27MB



( 2. 아래는 직경이 다소 큰 바퀴를 사용할 경우 가운데 부분이 걸릴 수 있어 바퀴 나뉘는 부분을 좀더 좁게 , 그리고 두께를 4t 정도 되도록한 파일 입니다.  그리고 직접 드릴로 나사의 고정 위치를 잡도록 나사구멍이 없는 파일입니다. 
- 다만, 수정한 파일은 직접 출력해서 테스트해 보지 않았기에, 먼저 오리지널 파일을 사용해 보시고 필요할 경우 아래 파일을 출력해 보시기 바랍니다.)

아래 파일 출력 예상 이미지
Rasino_4WheelCar_base_01.stl
1.48MB

2. 모터 고정용 브라켓
(본 게시글에 사용된 모터를 Car 베이스에 고정하기 위한 브라켓 입니다. )
아래 출력용 모터 서포터는 좌측용과 우측용 2가지이며,  각각 2개씩 총 4개를 출력하면 됩니다.

아래 파일 출력 예상 이미지
soporte_motor1.STL
0.04MB
soporte_motor2.STL
0.04MB


3. 모터 고정용 전용 브라켓(M3 나사) 별도 구매용
( 위 2번의 브라켓은 출력용이다 보니 아무래도 RC-Car를 
운행 할 수록 Car 베이스에 단단히 고정되지 않고 흔들거릴 수 있습니다.  때문에,   본 게시글에 사용된 모터 전용 M3나사 브라켓을 별도로 구매해서 고정시키셔도 좋을 것 같습니다.)

브라켓 구매 링크 :  smartstore.naver.com/domekit/products/2988750683  (2개 1셋 이기 때문에 구매하실때는 2개구매 혹은 여유 있게 구매)

 

반응형
반응형

【 아두이노Proj#6 선없는 조이스틱 블루투스 무선 미니카 만들기~! (HC-05)

 지난 시간 조이스틱을 이용한 미니카를 만들어 보았다. 하지만, 선이 연결되어 있어 움직임과 거리에 제약이 있어 많이 불편하였다. 이에, 최근에 다루었던 블루투스 통신 기능을 활용하여 무선으로 깔끔하게 제작해 보도록 하자.

 

▶ 선수 학습 :

    1. [아두이노 모듈#14] 조이스틱 Joystick 사용하기 #1 ☜ (클릭)

    2. [아두이노 모듈#15] L9110S 모듈 사용하기 #1 (모터 드라이버 참조)  ☜ (클릭)

    3. [아두이노 모듈#6] 조이스틱 미니카 만들기 (유선 미니카 기본 참조)  ☜ (클릭)

    4. [아두이노 모듈#16] 아두이노... 블루투스통신 (블루투스 설정법 참조) ☜ (클릭)

    5. [아두이노 모듈#18] 아두이노... 블루투스통신 (블루투스 제어법 참조) ☜ (클릭)

 

 미니카 제작 재료 (우노보드 대신 나노보드로 대체 가능)

( ※ 배터리 전원을 5V이하로 공급 시 Step-UP 컨버터를 사용하면 되고, 5V이상을 공급 시에는 AMS1117과 같은 5V 정전압 컨버터 같은 것을 사용하면 됩니다)
예시) 18650 3.7v 1개 사용시 → Step-Up컨버터 / 18650 3.7v 2개 사용시→ 정전압 컨버터

▶ 실습 목표 :  

 1. [ L9110S 모터 모듈을 활용하는 방법에 대해 이해 할 수 있다. 

 2. [ 조이스틱의 컨트롤 기능을 익힐 수 있다.  ]

 3. [ Step up 컨버터를 이용해 낮은 입력 전압을 5V전압으로 승압해 주는 컨버터를 다룰 수 있다. ]

 4. [ 블루투스 모듈의 셋업과 페어링(연결) 및 사용법을 익힐 수 있다. ]

 5. [ 아두이노 두 대 상호간 통신을 통해 제어하는 방법을 익힐 수 있다 ]

 

▶ 실습 회로도면 :
  (이미지 클릭하면 확대 가능)

[1. 미니카 본체 연결도]
※ 18650(3.7v) 배터리를 1개 사용하는 미니카 회로도 입니다. 
당연히 움직이는 속도가 빠르지 않을 수 있고 동작 시간도 짧을 수 있습니다. 만약 배터리를 추가하여 활용하고자 할 때는 아래 미니카 전원보강회로 도면을 참고해 주세요.

 

[2. 미니카 블루투스 조정기 연결도]

※ 블루투스 페어링(자동 연결)을 위해서는, 선수학습 4번을 통해 블루투스 설정법을 확인하여, 본체에 있는 블루투스 모듈은 마스터(Master)로 설정하고, 조이스틱 조정기의 블루투스는 슬레이브로(Slave)로 설정 작업이 필요하다. 
(물론 마스터와 슬레이브가 반대로 바뀌어도 상관이 없다)

[ 5V 이상의 배터리 2개를 사용시 회로 연결도 ]
:  만약 5v이상의 배터리를 공급한다면,  Stepup 모듈은 필요치 않으며, 18650 두 개를 직렬로 연결하면 7.4v가 되고 Vin에 입력하고,  모터 드라이버 모듈에도 공급을 해주면 높은 전압(전력)으로인해 모터에 힘이 잘 전달 됩니다.  
이 때, 블루투스는 5V를 넘겨 입력하면 안 되기에, 아두이노의 5V 단자에서 연결해야 하니 주위하세요.

▶ 실습 절차  :  

1.   부품을 준비하여 위와 같은 회로를 각각 구성한다. 

   -  미니카의 베이스 판은 아크릴 판 혹은 MDF 등 주변에서 쉽게 구할 수 있는 것으로 한다.

   -  미니카의 구동 바퀴 외에 보조바퀴를 달아도 되고, 여기처럼 미끌리면서 지지 해줄 수 있는 둥근 나사로 간단히 해결하여도 좋다. 

   - 미니카의 구동속도나 파워를 높이고자 한다면, 3.7V 베터리 2개를 직렬연결 해주거나, 충분한 전류가 공급될 수 있도록 베터리부분을 보강 해준다. 

2.   아래 코드를 작성하고 각각의 프로그램을 로딩 후 실행시킨다.

3.  응용실습 :  코딩 부분을 수정하여 조이스틱의 대각선 방향 제어가 되도록 실습해본다. (선수학습 3번 참조)

 

▶ 프로그램 코드 및 설명  : 

【 코드1-본체 

#include <SoftwareSerial.h>
SoftwareSerial BTSerial(2, 3); // BTSerial(Rx, Tx)
int A_1A = 9;
int A_1B = 10;
int B_1A = 5;
int B_1B = 6;
int speed = 250;   // speed: 0~ 255
char joyBT;

void setup() {
  //핀을 초기화 하고, 출력설정
  pinMode(A_1A, OUTPUT);
  pinMode(A_1B, OUTPUT);
  pinMode(B_1A, OUTPUT);
  pinMode(B_1B, OUTPUT);
  digitalWrite(A_1A, LOW);
  digitalWrite(A_1B, LOW);
  digitalWrite(B_1A, LOW);
  digitalWrite(B_1B, LOW);
  Serial.begin(9600);  
  BTSerial.begin(9600);
}

void loop() {
  if (BTSerial.available()) {      
    joyBT = BTSerial.read();
    Serial.println(joyBT);        
    switch (joyBT) { 
     case 'f' :        // 모터 전진        
        //모터A
        analogWrite(A_1A, speed);
        analogWrite(A_1B, 0);    
        //모터B
        analogWrite(B_1A, speed);
        analogWrite(B_1B, 0);
        break;
     
    case 'b' :        // 모터 후진                
        analogWrite(A_1A, 0);
        analogWrite(A_1B, speed);            
        analogWrite(B_1A, 0);
        analogWrite(B_1B, speed);  
        break;
       
    case 'l' :        // 모터 좌회전                
        analogWrite(A_1A, speed);
        analogWrite(A_1B, 0);            
        analogWrite(B_1A, 0);
        analogWrite(B_1B, speed);        
        break;    
    
    case 'r' :        //모터 우회전                
        analogWrite(A_1A, 0);
        analogWrite(A_1B, speed);            
        analogWrite(B_1A, speed);
        analogWrite(B_1B, 0);
        break;
    
    case 's' :        // 모터 정지      
      analogWrite(A_1A, 0);  
      analogWrite(A_1B, 0);    
      analogWrite(B_1A, 0);
      analogWrite(B_1B, 0);
      break;    
    }
  }
}

 

 

【 코드2-조정기 

#include <SoftwareSerial.h>
SoftwareSerial BTSerial(2, 3); // BTSerial(Rx, Tx)
int BTstates=0;       // 블루투스 신호 상태 저장용 변수

const int X_AXIS =0; //마우스 X 축 (A0)
const int Y_AXIS =1; //마우스 Y 축 (A1) 
int xVal=0;
int yVal=0;

void setup() {
  BTSerial.begin(9600);  
  Serial.begin(9600);
}

void loop() {
  
  xVal=map(analogRead(X_AXIS),0,1023,100,0); //x축값 읽어 저장 
  yVal=map(analogRead(Y_AXIS),0,1023,300,200); //Y축값 읽어 저장
  
  // 모터 전진 //
  if (xVal >= 60 && yVal >= 225 && yVal <=275)  { 
    BTSerial.write('f');
    Serial.println('f');
  }
  
  // 모터 후진 //
  else if (xVal <= 40 && yVal >= 225 && yVal <=275)  { 
    BTSerial.write('b');
    Serial.println('b');
  }
  
  // 모터 좌회전 //
  else if (yVal <= 240 && xVal >= 25 && xVal <= 75)  { 
    BTSerial.write('l');
    Serial.println('l');
  }

  // 모터 우회전 //
  else if (yVal >= 260 && xVal >= 25 && xVal <= 75)  { 
    BTSerial.write('r');
    Serial.println('r');
  }

 else { 
    BTSerial.write('s');
    Serial.print('s');
  }
  delay(100); 
}

 

 

▶ 아두이노 파일다운 :

(다운받아서 압축을 풀어 사용하세요)

[ BlueTooth Joystick_L9110 ].zip
0.00MB

 조립 과정 및 동작 영상 :

[ YouTube 고화질 영상보기 ]

https://youtu.be/zcgeo4yLVnw

 

반응형
반응형

【 아두이노Proj#6 조이스틱 미니카 만들기~! 

 조이스틱을 이용하여 아두이노 미니카(mini car)를 만들어 보려 한다. 

물론 무선으로 제어가 가능한 방법들도 많이 있지만, 구성이 간단하고 쉽게 조립해서 바로 실행시켜 볼 수 있어 유선으로 제어를 해보려 한다. 아두이노를 배우는 단계에 있다면, 쉬운것 부터 차근 차근 만들어 보는 경험을 쌓는 것이 매우 도움이 되기 때문이다. 또한 조이스틱과 소형의 L9110s 모터 드라이버를 활용해보는 공부도 될 것이다. 

▶ 선수 학습 :

    1. [아두이노 모듈#14] 조이스틱 Joystick 사용하기 #1 ☜ (클릭)

    2. [아두이노 모듈#15] L9110S 모듈 사용하기 #1 (모터 드라이버 참조)  ☜ (클릭)

 

 미니카 제작 재료

 

▶ 실습 목표 :  

 1. [ L9110S 모터 모듈을 활용하는 방법에 대해 이해 할 수 있다.

 2. [ 조이스틱으로 유선 제어를 응용해 볼 수 있다. ]

 3. [ Step up 컨버터를 이용해 낮은 입력 전압을 5V전압으로 승압해 주는 컨버터를 다룰 수 있다. ]

 

▶ 실습 회로도면 :
  (이미지 클릭하면 확대 가능)

※ 위 회로 연결에서 모터의 회전 방향이 반대가 될 경우 연결선을 서로 바꾸어 주면 된다. 

  (예를 들어, Motor A 가 반대 방향으로 회전 할 경우 A1-A 와 A1-B 에 연결한 선을 서로 바꾸어 연결한다)

 속도제어를 위해서는 디지털 포트 중에서 PWM신호 출력이 가능한 아두이노 포트(숫자앞 '~'표시) 를 연결해야 한다.

 

▶ 실습 절차  : 

 

1.   부품을 준비하여 위와 같은 회로를 구성한다. 

   -  미니카의 베이스 판은 아크릴 판 혹은 MDF 등 주변에서 쉽게 구할 수 있는 것으로 한다.

   -  조이스틱과 연결 되는 케이블은 유연성이 있는 연선(4선 혹은 3선)으로 연결한다.

2.   아래 코드를 작성하고 프로그램을 로딩 후 실행시킨다.(혹은 첨부파일 다운)

3.  코딩1은 조이스틱으로 상하좌우 제어만 가능한 기본 코드로 먼저 적용해 본다.

4.  코딩2는 조이스틱의 대각선 방향을 제어 해볼 수 있는 코드로, 필요한 경우 시리얼모니터링을 통해 데이터 값을 참고하여 코드 속 수치 값을 변경해주거나  자신만의 알고리즘으로 변경해본다. 

 

 

 

※  선수학습 1(조이스틱 편) 을 참고하여, 조이스틱을 상하좌우, 대각선방향 등 작동시켰을 때 나오는 값을 참고 하여, 아래 코딩에서 사용 되는 Jox, Joy의 좌표값을 적당한 값으로 수정할 필요가 있을 수 있다. 

(예를 들어, " if (Joy >= 90 && Jox < 20) ..." 에서  '90' 이나 '20'과 같은 수치 값 조정)

 

▶ 프로그램 코드 및 설명 (코드1) : 

/* 조이스틱 미니카 제어 (방향 : 상하좌우) */

/* L9110s 모터드라이버
   오른쪽모터
   L9110s A_1A 9 
   L9110s A_1B 10 
   왼쪽모터
   L9110s B_1A 5
   L9110s B_1B 6
*/
int A_1A = 9;
int A_1B = 10;
int B_1A = 5;
int B_1B = 6;
int speed = 250;   // speed: 0~ 255

void setup ( ) {  
  //핀을 초기화 하고, 출력설정
  pinMode(A_1A, OUTPUT);
  pinMode(A_1B, OUTPUT);
  pinMode(B_1A, OUTPUT);
  pinMode(B_1B, OUTPUT);
  digitalWrite(A_1A, LOW);
  digitalWrite(A_1B, LOW);
  digitalWrite(B_1A, LOW);
  digitalWrite(B_1B, LOW);
  Serial.begin(9600);  
}

void loop ( )  {
  int Jox = map(analogRead(A0), 0, 1023, -100, 100);
  int Joy = map(analogRead(A1), 0, 1023, -100, 100);
  Serial.print(" JoX : ");
  Serial.print(Jox);
  Serial.print("    JoY : ");
  Serial.println(Joy);
   
  if (Jox >= 90 && Joy <= 20 && Joy >= -20)  {
    // 모터 전진
    //모터A
    analogWrite(A_1A, speed);
    analogWrite(A_1B, 0);    
    //모터B
    analogWrite(B_1A, speed);
    analogWrite(B_1B, 0);
  }
  else if (Jox <= -90 && Joy <= 20 && Joy >= -20) {
    // 모터 후진
    //모터A
    analogWrite(A_1A, 0);
    analogWrite(A_1B, speed);    
    //모터B
    analogWrite(B_1A, 0);
    analogWrite(B_1B, speed); 
  }
  else if (Joy >= 90 && Jox < 20)  {
    //모터 우회전
    // 모터A 
    analogWrite(A_1A, 0);
    analogWrite(A_1B, speed);    
    // 모터B 
    analogWrite(B_1A, speed);
    analogWrite(B_1B, 0);
  }   
  else if (Joy <= -90 && Jox < 20) {
    // 모터 좌회전
    // 모터A 
    analogWrite(A_1A, speed);
    analogWrite(A_1B, 0);    
    // 모터B 
    analogWrite(B_1A, 0);
    analogWrite(B_1B, speed);  
  }

    // 모터 정지
  else {
    analogWrite(A_1A, 0);  
    analogWrite(A_1B, 0);    
    analogWrite(B_1A, 0);
    analogWrite(B_1B, 0);
  }
}

 

▶ 프로그램 코드 및 설명 (코드2): 

/* 조이스틱 미니카 제어 (방향 : 상하좌우 & 대각선 제어) */

/* L9110s 모터드라이버 
   오른쪽모터 
   L9110s A_1A 9 
   L9110s A_1B 10 
   왼쪽모터 
   L9110s B_1A 5 
   L9110s B_1B 6 
*/ 
int A_1A = 9; 
int A_1B = 10; 
int B_1A = 5; 
int B_1B = 6; 
int speed = 250;   // speed: 0~ 255 

void setup ( ) {  
  //핀을 초기화 하고, 출력설정 
  pinMode(A_1A, OUTPUT); 
  pinMode(A_1B, OUTPUT); 
  pinMode(B_1A, OUTPUT); 
  pinMode(B_1B, OUTPUT); 
  digitalWrite(A_1A, LOW); 
  digitalWrite(A_1B, LOW); 
  digitalWrite(B_1A, LOW); 
  digitalWrite(B_1B, LOW); 
  Serial.begin(9600);   
} 

void loop ( )  {
  int Jox = map(analogRead(A0), 0, 1023, -100, 100); 
  int Joy = map(analogRead(A1), 0, 1023, -100, 100); 
  Serial.print(" JoX : "); 
  Serial.print(Jox); 
  Serial.print("    JoY : "); 
  Serial.println(Joy); 
    
  if (Jox >= 90 && Joy <= 20 && Joy >= -20)  { 
    // 모터 전진 
    //모터A 
    analogWrite(A_1A, speed); 
    analogWrite(A_1B, 0);     
    //모터B 
    analogWrite(B_1A, speed); 
    analogWrite(B_1B, 0); 
  } 
  else if (Jox <= -90 && Joy <= 20 && Joy >= -20) { 
    // 모터 후진 
    //모터A 
    analogWrite(A_1A, 0); 
    analogWrite(A_1B, speed);     
    //모터B 
    analogWrite(B_1A, 0); 
    analogWrite(B_1B, speed);  
  } 
  else if (Joy>=90 && Jox<20 Jox<=20 && Jox>=-20 && Joy>=90)  { 
    //모터 우회전 
    // 모터A  
    analogWrite(A_1A, 0); 
    analogWrite(A_1B, speed);     
    // 모터B  
    analogWrite(B_1A, speed); 
    analogWrite(B_1B, 0); 
  }    
  else if (Joy<=-90 && Jox<20 Jox<=20 && Jox>=-20 && Joy<=-90) { 
    // 모터 좌회전 
    // 모터A  
    analogWrite(A_1A, speed); 
    analogWrite(A_1B, 0);     
    // 모터B  
    analogWrite(B_1A, 0); 
    analogWrite(B_1B, speed);   
  }

   // 동북방향
  else if ( Jox >= 90 && Joy >= 90 ) {
    analogWrite(A_1A, 120);
    analogWrite(A_1B, 0);    
    analogWrite(B_1A, speed);
    analogWrite(B_1B, 0);  
  }

   // 서북방향
  else if ( Jox >= 80 && Joy <= -80) {    
    analogWrite(A_1A, speed);
    analogWrite(A_1B, 0);    
    analogWrite(B_1A, 140);
    analogWrite(B_1B, 0);  
  }
  
  // 동남방향
  else if ( Jox <= -90 && Joy >= 80) {    
    analogWrite(A_1A, 0);
    analogWrite(A_1B, 120);    
    analogWrite(B_1A, 0);
    analogWrite(B_1B, speed);  
  }
  // 서남방향
  else if ( Jox <= -80 && Joy <= -80) {    
    analogWrite(A_1A, 0);
    analogWrite(A_1B, speed);    
    analogWrite(B_1A, 0);
    analogWrite(B_1B, 140);  
  }

   // 모터 정지
  else { 
    analogWrite(A_1A, 0);   
    analogWrite(A_1B, 0);     
    analogWrite(B_1A, 0); 
    analogWrite(B_1B, 0); 
  } 
}

 

▶ 아두이노 파일다운 :

(다운받아서 압축을 풀어 사용하세요)

# 1.  <코딩 1>

L9110_miniCar_JoyII.zip
0.00MB

# 2.  <코딩 2>

L9110_miniCar_JoyIII.zip
0.00MB

 

조립 과정 및 동작 영상 :

아두이노 미니카 제작 영상

[ ▶ 유튜브에서 보기 ]

https://youtu.be/GbwqPd2gi_s

 

반응형
반응형

 아두이노Proj#5 아두이노 스마트 화분 만들기 Ver 3 with LCD

 지난시간 스마트 화분을 만들고 수분의 상태를 간단히 체크할 수 있는 FND ( 7 Segment)를 부착해 보았다.

이번에는 여기에 LCD를 추가하여 화분의 수분 상태를 좀더 그럴싸(?)하게 출력해보고자 한다.

아울러 이런 과정을 통하여 LCD를 다루는법과 코딩 연습에도 도움이 될 것이다. 

 처음부터 멋지게 코딩을 잘짜는 천재는 없다. 이것 저것 여러가지 방법으로 직접코딩해보고(Ctrl+C, Ctrl+V는 지양) ,수많은 연습을 거치면서 경험이 쌓이다 보면 코딩이 점점 쉬워지며, 비로소 코딩능력이 갖춰지는 것이다.  무엇보다 할 수 있다는 자신감을 갖는 것이 중요하다. 태어나면서 부터 코딩전문가가 따로 있는 것이 아니지 않는가?
 지금의 어떤 분야 전문가들도 기껏(?) 대학때 공부한 것으로 전공을 정해서 시작한 후로 제대로 공들인 시간은 그렇게 많지는 않을 것이다. 그 어떤 완전 무지한 분야라도, 그래서 생초보부터 시작하더라도 집중과 몰입을 해준다면 충분히 그 분야 전문가 수준의 역량을 쌓을 수 있다.   그러니 스스로 "나는 저쪽은 잘 몰라?", "저 것은 할 수 없을 거야?"  라는 스스로의 한계선을 미리부터 긋지 말았으면 한다.

 

다시 본론으로 돌아가서,  지난시간 토양습도센서 모듈에서 나오는 아날로그 출력 단자(AO) 값(0V~5V)을 아두이노의 아날로그 입력(A0)단자로 받아서 FND로 출력해 보았다. (0~9의 10단계 숫자 값) 

맵핑이라는 함수를 사용하여 쉽게 처리 할 수 있었는데,  ex)  map(sensorVal, 0, 1023, 9, 0); 

 이번에는 여기에 LCD를 추가하도록 해볼 예정이다. LCD상에 숫자도 표현하고, 화분속의 수분의 상태를 직관적으로 알수 있도록 레벨바 형태로 표시해보고자 한다.   (오늘 과제에서 FND 부분은 생략해도 상관이 없다)

 

▶ 선수 학습 :

   1. [아두이노 센서#34]  토양 센서( YL-38) Sensor 다루기  ☜ (클릭)

   2. [아두이노 기초#11] FND 구동실습 II (숫자 카운트하기)  ☜ (클릭) 

   3. [아두이노 센서#14]     ...I2C LCD 사용하기    ☜ (클릭) 

   4. [아두이노 프로젝트#1] 아두이노 스마트화분 만들기Ver1 ☜ (클릭) 

   5. [아두이노 프로젝트#2] 아두이노 스마트화분 만들기Ver2 ☜ (클릭) 

 

 토양습도센서 (YL-38 , YL-69) 세부 스팩

  ※ 위 선수 부분 참조

 

 워터 펌프 스팩

  ※ 위 선수 부분 참조

 

▶ 실습 목표 :  

  1. [ 토양습도 센서에 대해 이해 할 수 있다. 

 2. [ 워터펌프에 대해 이해 할 수 있다. ]

 3. [ 토양 센서 값에 따라 펌프를 작동시켜 물공급 조절을 할 수 있다.]

 4. [ FND에 숫자를 표현 할 수 있다 ]

 5. [ 습도 data를 숫자 0~9 값으로 맵핑해 출력 할 수 있다 ]

 6. [ LCD를 레벨바 형태로 표현하고 다룰 수 있다.]

 

▶ 실습 회로도면 :
  (이미지 클릭하면 확대 가능)

[ 위 회로에서 주의 하셔야 할 것은  아두이노 회로에서 주로 사용되는 TR의 경우(2SA, 2SC타입)  NPN형 타입은 PNP형 타입과 마찬가지로 핀의 순서가 있으니 주의 하셔야 합니다. 

우선, 도면에 사용된 NPN형 TR은 2SC9011 이며, 라벨이 적인 면의 왼쪽을 기준으로 핀 이름이 
1.   2SC9011 :  - E B C -  순서로 되어 있고, 

2.   2SC1815 :  - E C B - 순서로 되어 있으니 반드시 확인 후 연결하세요. 

 

- C9011과 C9012, C9013은 모두 핀 배열이 동일함( E B C)

또한, 이외의 TR을 사용할 경우 미니 테스터기 혹은 인터넷 검색으로 핀 순서를 확인하여 도면대로 연결하시면 문제 없이 동작 할 거예요. ]

 

[ 추가로 위 회로의 모터 연결 방식은 장시간 사용하기에는 좀 무리가 따르며, 전원을 별도로 넣어 줄 수 있는 릴레이 모듈이나, L298 모터 드라이버 모듈을 연결해서 사용하시는 걸 권장합니다. 조만간 보강된 회로의 업로드 버전도 올려 볼게요. ^^; ]   

 

▶ 실습 절차  : 

1.   부품을 준비하여 위와 같은 회로를 구성한다. 

2.   물펌프는 물통 속에 담겨진다. 따라서 물펌프의 전선이 빠져나오는 부분은 필요한 경우 글루건 등으로 보강처리 할 필요가 있다. 

3.  우선 본 실험처럼 작은 물통을 준비하고, 간이 화분을 준비해서 실험을 해 본 후 실제 화분에 설치해보면 좋을 것이다. 또한 필요한 경우 센서를 두 개 이상 설치할 수도 있고, 두개의 화분을 하나의 보드로 연결하여 관리 해 볼 수 있을 것이다.

4.  선수학습을 참고하여 FND를 다루는 법을 먼저 익혀보고, 아래 코드에서 처럼, 배열과 for 구문을 이용하여 FND를 좀더 세련되게 코딩하는 법에 대해 숙지 하면 좋다. 

5. 처음 LCD를 다루는 사람은 선수 학습부분을 참고하면 도움이 되며, 여기서는 단순 숫자 값을 그래픽 형태의 레벨바로 표현해 보는 실습이다.  여기에 본인만의 아이디어를 추가하여 연습해보면 코딩 연습에도 도움이 될 것이다.

 

▶ 프로그램 코드 및 설명 : 

/* Auto Water Pot - 자동 물공급 화분 with LCD */

#define A0Pin 0

#include <LiquidCrystal_I2C.h>       // i2c LCD 사용위한 선언

LiquidCrystal_I2C lcd (0x27, 16,2);    // (고유ID, 16칸2줄LCD)

int sensorVal = 0;

int pump = 9;

byte digits[10][7] = {

//  {a,b,c,d,e,f,g}   FND 핀 배열

    {1,1,1,1,1,1,0},      // 0을 출력

    {0,1,1,0,0,0,0},      // 1을 출력

    {1,1,0,1,1,0,1},      // 2를 출력

    {1,1,1,1,0,0,1},      // 3을 출력

    {0,1,1,0,0,1,1},      // 4를 출력

    {1,0,1,1,0,1,1},      // 5를 출력

    {0,0,1,1,1,1,1},      // 6을 출력

    {1,1,1,0,0,1,0},      // 7을 출력

    {1,1,1,1,1,1,1},      // 8을 출력

    {1,1,1,1,0,1,1},      // 9를 출력

};
void setup ( ) {
 Serial.begin(9600); 

 lcd.begin();              // LCD 시작 & 초기화

 lcd.clear();
 
pinMode(pump, OUTPUT); 

 for (int i=2; i<9; i++) {

      pinMode(i,OUTPUT);    // 2~8번, 9(pump) 포트 모두 출력 설정 

  } 
}

 

void displayDigit(int num)   {    // FND 숫자표시 함수

  int pin = 2;
  
for (int i=0; i<7; i++)     {       
    
digitalWrite(pin+i, digits[num][i]);   

  }
}
void loop ( ) {  
  
int FNDVal=0;
  
sensorVal = analogRead(A0Pin);        // 토양센서값 읽어 저장

  Serial.print("Asensor = ");
  
Serial.println(sensorVal);                  // 0(습함) ~ 1023(건조)값 출력

  FNDVal = map(sensorVal,0,1023,9,0); // 습도값을 FND 출력값으로 맵핑
  // 매우습함 : 9,  매우건조 : 0

  displayDigit(FNDVal);                       // FND에 숫자를 표시한다.
  
// 습도 값에 따라 출력 처리 다르게 해줌

  Serial.print("FND Val =");

  Serial.println(FNDVal);

  lcd.clear();

  lcd.setCursor(0,0); 

  lcd.print("Dry---------Wet");           // 첫 줄에 적힐 내용

  lcd.setCursor(7,0);                       // 첫 줄 8째 칸으로 커서 이동

  lcd.print(FNDVal,1);                      // FND 출력 값을 LCD 첫 줄 가운데 출력

  lcd.setCursor(2,1);                        // 두 번째 줄에 3째 칸에 커서 위치

 switch(FNDVal) {
   
case 1:
     
lcd.print("                ");           // 남아 있던 레벨바 잔상 제거
      lcd.write(B11111111);              // 레벨바 모양의 아스키 코드 값
     
break;

    case 2:
     
lcd.print("                ");
     
lcd.write(B11111111);
     
lcd.write(B11111111);
     
break;

    case 3:
     
lcd.print("                ");      
     
for (int i=0; i<3; i++) {       // FNDVal 숫자 만큼 레벨바 생성

        lcd.write(B11111111);
      }
     
break;

    case 4:
     
lcd.print("                ");
     
for (int i=0; i<4; i++) {
       
lcd.write(B11111111);
      }
     
break;

    case 5:
     
lcd.print("                ");
     
for (int i=0; i<5; i++) {
       
lcd.write(B11111111);
     
}

      break;    
   
case 6:
     
lcd.print("                ");   
     
for (int i=0; i<6; i++) {
       
lcd.write(B11111111);
      }
     
break;     

    case 7:
     
lcd.print("                ");   
     
for (int i=0; i<7; i++) {
       
lcd.write(B11111111);
     
}

      break;     

    case 8:
     
lcd.print("                ");   
     
for (int i=0; i<8; i++) {
       
lcd.write(B11111111);
      }
     
break;     

    case 9:
     
lcd.print("                ");   
     
for (int i=0; i<9; i++) {
       
lcd.write(B11111111);
      }
     
break;     
 
}

// 값이 '2'이하로 건조해지면 1초동안 펌프작동

if ( FNDVal <= 2) {   

    Serial.println(" Very Dry ! ");       

    Serial.println(" Punping for 1 Second ! ");       

    digitalWrite(pump, HIGH);   

    delay(1000);     // 펌프 작동시간 설정(1000→1초)

  }

  else {

    Serial.println(" Very Wet ! ");   

    digitalWrite(pump, LOW);  // 펌프작동 멈춤
 
}   
  delay(3000);      //정보수집 시간(간격) 설정

}                             

 

▶ 실행영상 :  

(전체화면 보기로 보세요)

(아래는 유튜브로 시청하기)

▶ 아두이노 파일다운 :

(다운받아서 압축을 풀어 사용하세요)

RasINO_AutoPotFND_LCDok.zip
0.00MB

 

【 LCD관련 에러나 동작이 안 될 때 】

 LCD관련한 라이브러리 에러나 코드 에러에 대한 안내를 드립니다.   크게 아래와 같은 두 가지 형태를 보이는데요, 

 

▶ 1. 코드를 실행하기전 LiquidCrystal_I2C.h: No such file or directory 에러라고 뜨는 경우!

 

 이때는 LCD 헤더파일이 설치가 되어 있지 않았을 경우입니다.  아예 관련 라이브러리(해더 파일)가 설치 되지 않은 경우입니다. 

해결법은 바로 아래에 첨부한 라이브러리를 다운받아 압축을 풀지 말고 라이브러리 관리 메뉴에서  .zip 라이브러리 추가 메뉴를 이용해서 추가해주세요.

경로 :  아두이노IDE >  스케치  라이브러리 포함하기  .zip 라이브러리 추가...  "다운받은 라이브러리파일 선택"

 

2. 또 한가지 LCD관련 에러는 ,  no matching function for call to ‘LiquidCrystal_I2C::begin();   라고 뜨는 경우!

 라이브러리 파일도 똑같은 이름이지만, 제공자에 따라 내부코드가 다른 라이브러리인 경우가 종종 있어요.  그래서 만약 제가 실험에서 사용한 라이브러리가 아닌,  같은 이름이지만 다른 라이브러리를 사용할 경우 위와 같은 에러 표시를 낼 수 있습니다.    라이브러리는 분명 설치되어 있지만 그래서 프로그램이 인지는 하는데, 코드에서 사용한 함수 적용이 되지 않을 때 이런 에러를 띄우게 됩니다.    그럼, 해결책은 실험에 사용한(적용한) 그 라이브러리를 다시 설치해 주어야 하는데요,   이 때 중요한 것은 아두이노에서는 똑 같은 이름의 라이브러리가 두 개 설치될 경우 또다른 중복에러를 띄우게 됩니다.   그러니 잘 못 설치된 라이브러리는 찾아서 반드시 삭제하거나,  다른이름으로 임시 변경해 놓거나,  나중에 다른 프로그램에서 사용해야 할 경우를 대비해서 압축해 놓고 원본은 지워 놓으면 됩니다. 

 

 그럼 기존 라이브러리를 찾아서 삭제를 하거나 하려면 설치된 라이브러리를 찾아야 겠죠? 

찾는 위치는 보통 아래 두 곳입니다.  (윈도우10 기준이며, 윈도우7도 비슷한 위치) 

 

두 곳으로 나뉘어 설치되는 이유는 아두이노 IDE의 "라이브러리 관리 메니저" 창을 통해 검색으로 설치되는 기본위치가 있고(아두이노 설치된 경로),   '.zip 라이브러리' 추가로 설치되는 위치가(도큐멘트 문서 저장영역-Doucuments) 따로 있어서 그렇습니다. 

 

< .zip 라이브러리 추가 메뉴에서 추가한 라이브러리 설치 위치 >

 1. C:\Users\유저-이름\Documents\Arduino\libraries    

 

 <라이브러리 관리 메뉴창에서 라이브러리 직접 검색으로 설치된 라이브러리 위치 >

 2. C:\Program Files (x86)\Arduino\libraries

 

위 두 곳에서 찾아서 삭제를 하세요.   (그냥, 폴더 째로 삭제하면 됩니다.)

 그리고 아래 첨부하는 라이브러리를 다운받아  압축파일 그대로 .zip 라이브러리 추가 메뉴로 추가해 주세요. 

만약, 압축파일 그대로 추가할 때 에러가 난다면,  앞축을 풀고  xxxxx.h 가 있는 폴더만 "C:\Users\유저-이름\Documents\Arduino\libraries" 경로에 붙여넣기 하면 됩니다.    이때 아두이노 스케치 IDE는 모두 닫고 재실행 해야 적용 됩니다.

 

 본 예제에서 사용한 라이브러리 다운로드 받기 :

Arduino-LiquidCrystal-I2C-library-master.zip
0.01MB

  ※ 중요! : 여기에서 제시된 코드로 작성할 경우 반드이 이 라이브러리로 설치하셔야 합니다.   만약, 여러분의 PC에 똑 같은 이름의 라이브러리가 있을 경우 반드시 삭제를 하거나 압축해서 백업을 해 놓으면 충돌이 일어나지 않습니다.!!!

(추가) L9110S 모터 모듈을 보강한 회로도:

 앞서의 회로는 기본 아두이노 전원으로 LCD와 FND 그리고 모터를 돌려야 하기 때문에 동작이 조금 불안정 할 수 있어요.   따라서 모터에 공급되는 출력을 증폭시켜 줄 수 있는 모터드라이버 모듈을 보강한 회로와 관련 코드를 첨부하니 참고하세요.    참고로, 그래도 불안정할 경우, 모터드라이버 모듈에 별도의 전원 3.5V~5V(펌프모터 허용 전압)을 공급해주면 훨씬 안정적이고 더욱 오래 작동됩니다.  이때, GND를 아두이노 회로의 GND와 합선(결합) 시켜 주면 됩니다.

< L9110S 모듈 스팩 참고 >

2019/05/07 - [아두이노/3. 아두이노 모듈] - 【 아두이노모듈#15】 L9110S #1(모터 드라이버) 모듈 사용하기

 

이미지를 클릭하면 확대 되며, 아래 클릭하여 다운로드도 가능해요
(Ras2-보강)WaterPotL9110_도면.png
0.49MB

 

[ L9110S 모터 드라이버 모듈 추가한 코드 다운로드 받기 ]

AutoPotFND_LCD_L9110S.zip
0.00MB

[ 작동영상 ]

 

 

  개인적인 견해로,  위의 회로들은 작품의 구현과 비주얼을 위해 LCD를 달았는데요, 전원소모가 좀 있고, 모터와 같이 돌리다 보니, 다소 불안정 하기도 해서,  LCD는 빼고 하셔도 좋습니다. 

 그리고 가장 일반적으로 많이 사용하는 그래서 초급자 분들도 접근하기 쉽도록 우노 보드로 제작하였는데요?   좀더 실용적이려면,  아두이노 보다 작은,  나노보드나, 프로미니 같은 보드로 제작하면, 전력소모도 줄고 크기도 줄어들어 실제 화분에 장착하기도 용이할 거예요. 

 

 

 [ 차세대 버전 예고 ]

 차기 버전에서는,  디스플레이 장치를 미니 OLED를 달고 ,  보드도 사이즈가 작은 보드를 사용하고, 리튬폴리머 배터리를 적용하여 실제로 화분에 부착할 수도 있는 사이즈로 제작할 예정입니다. 

또한, Wemos D1 mini 보드를 사용하여 화분의 습도 상태를 웹의 서버에 기록하도록 해볼 예정입니다. 

 차세대 버전 링크 :

『 매번 물 주기 귀찮은 화분! 말라죽는 우리 집 화분을 구해주세요! 』 아두이노 활용 프로젝트 콘텐츠 소개! 』

 

 

 

※ 주의! : 18650과 같은 리튬배터리는 직접적인 합선(쇼트)이나  회로내에서의 합선 등에 의해 불꽃과 소폭발의 가능성이 있는 제품이므로 다루실 때 충분한 주의와 사전지식이 필요하니 주의하시기 바랍니다.

 

 

[ 다운받은 프리징 부품 입력시키는 방법 ]

 

 

위 본문에 사용한 프리징 부품 입니다  : 
(원래 기본 카테고리에 없는 부품들은 사용자 개인들이 만든 것을 구글검색으로 찾아 넣어야 합니다)

Fritzing Part 4개 압축.zip
0.06MB

프리징 부품 추가하는 방법 :

 압축을 풀고 그리고 있던 작업 파일에서  부품검색창으로 갑니다. 

검색창의 검색 목록중  '▽'를 제일 아래쯤으로 가보면,  MINE 혹은 TEMP 라는 비어있는 항목이 나올거에요.  거길 클릭한다음,  그 빈공간에 다시 마우스 우클릭 하면, Import...   새로운 저장소....  등등의 팝업 메뉴가 보일거에요. 

거기서 Import... 를 클릭해서  좀전에 다운받아 압축풀어 놓은 프리징 부품들을 선택하면 부품을 불러올 수 있고 회로도 그릴 때도 집어 넣을 수 있게 됩니다.  

 

 

반응형
반응형

【 아두이노Proj#4 아두이노 스마트 화분 만들기 Ver2 with FND

 

 지난시간 아두이노를 이용해 기본적인 스마트 화분을 만들어 보았다. 

이제 여기에 화분의 수분 상태를 한 눈에 알아 볼 수 있도록 디스플레이 장치를 하나 추가하려고 한다.

다만 저전력으로 돌아가도록 하기 위해 FND를 사용하여 심플하게 표시해보려고 한다.
토양습도센서 모듈에서 나오는 아날로그 출력 단자(AO) 값(0V~5V)을 아두이노의 아날로그 입력(A0~A6)단자 중 하나로 받게 되면 0~1023 사이값으로 입력 받게 될 것이다. (보드에서 10bit A/D변환 처리) 

 그럼 이 값을 FND로 표현하고자 하는데, 0~9 사이의 숫자 값으로 맵핑 시켜서 나타내면 될 것이다. 

그리고 통상적으로 숫자 0을 매우 건조,  9를 매우 습함으로 생각하고 맵핑 시키면 될 것이다.

  ex)  map(sensorVal, 0, 1023, 9, 0); 

 

그럼 지난 시간에 배운 스마트 화분 1편을 참고하여 아래 내용을 본다면 어렵지 않게 완성시켜 볼 수 있을 것이다.

 

▶ 선수 학습 :

   1. [아두이노 센서#34]  토양 센서( YL-38) Sensor 다루기  ☜ (클릭)

   2. [아두이노 기초#11] FND 구동실습 II (숫자 카운트하기)  ☜ (클릭) 

   2. [아두이노 프로젝트#1] 아두이노 스마트화분 만들기Ver1 ☜ (클릭) 

 

 토양습도센서 (YL-38 , YL-69) 세부 스팩

< 센서모듈과 수분탐침을 연결한 모습 >

 

 

 

 

 

 시중에 YL-38, YL-69 두 종류가 있다, 기능상의 차이는 없으며 핀배열이 조금 상이할 뿐이다. 여기서는 YL-38을 가지고 제작 하려고 한다. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 워터 펌프 스팩

 

 

 

 

 

 

 

 

 

 

 

 

< 워터펌프용 튜브 : 지름 6mm, (외경6mm, 내경4mm) >

※ 위에 사용된 호수는 외경이 6 mm 이고 내경이 4mm 입니다. 그리고 펌프 출수구에 호수를 끼울때 호수를 출수구 바같으로 감싸듯 끼우게 되는데요, 펌프출수구의 외경이 7.4mm 됩니다. 이렇게 어느정도 역으로 크기 차이가 나야 호수가 수압에 의해 쉽게 빠지지 않습니다. 다만, 지금 정도의 차이에서, 끼워보니 상당히 빡빡했어요. 이럴때는 호수 내부에 물기를 살짝 묻혀서 끼워보면 조금 쉽게 끼워집니다.  ^^

 

▶ 실습 목표 :  

  1. [ 토양습도 센서에 대해 이해 할 수 있다. 

 2. [ 워터펌프에 대해 이해 할 수 있다. ]

 3. [ 토양 센서 값에 따라 펌프를 작동시켜 물공급 조절을 할 수 있다.]

 4. [ FND에 숫자를 표현 할 수 있다 ]

 5. [ FND에 습도 data를 숫자 0~9 값으로 맵핑해 출력 할 수 있다 ]

 

▶ 실습 회로도면 :
  (이미지 클릭하면 확대 가능)

 

 

※ 위 회로에 대해 모터 작동이 원활 하지 않을 수 있고, 장시간 사용시 아두이노 보드에 무리가 갈 수 있어 아래 처럼 NPN타입의 TR과 저항을 추가하여 보강하였다.  가급적이면 아래 회로를 참조하여 구성해주면 좋을 것이다.

(TR은 NPN 타입의 ' 2SC 9013 '을 사용하였으나,   TR 타입이 NPN타입 이면 어떤 것이든 동일하게 사용 가능하다. ) 

[ 위 회로에서 주의 하셔야 할 것은  아두이노 회로에서 주로 사용되는 TR의 경우(2SA, 2SC타입)  NPN형 타입은 PNP형 타입과 마찬가지로 핀의 순서가 있으니 주의 하셔야 합니다. 

우선, 도면에 사용된 NPN형 TR은 2SC9011 이며, 라벨이 적인 면의 왼쪽을 기준으로 핀 이름이 
1.   2SC9011 :  - E B C -  순서로 되어 있고, 

2.   2SC1815 :  - E C B - 순서로 되어 있으니 반드시 확인 후 연결하세요. 

또한, 이외의 TR을 사용할 경우 미니 테스터기 혹은 인터넷 검색으로 핀 순서를 확인하여 도면대로 연결하시면 문제 없이 동작 할 거예요. ]

 

[ 추가로 위 회로의 모터 연결 방식은 장시간 사용하기에는 좀 무리가 따르며, 전원을 별도로 넣어 줄 수 있는 릴레이 모듈이나, L298 모터 드라이버 모듈을 연결해서 사용하시는 걸 권장합니다. 조만간 보강된 회로의 업로드 버전도 올려 볼게요. ^^; ]   

 

 

▶ 실습 절차  : 

1.   부품을 준비하여 위와 같은 회로를 구성한다. 

2.   물펌프는 물통 속에 담겨진다. 따라서 물펌프의 전선이 빠져나오는 부분은 필요한 경우 글루건 등으로 보강처리 할 필요가 있다. 

3.  우선 본 실험처럼 작은 물통을 준비하고, 간이 화분을 준비해서 실험을 해 본 후 실제 화분에 설치해보면 좋을 것이다. 또한 필요한 경우 센서를 두 개 이상 설치할 수도 있고, 두개의 화분을 하나의 보드로 연결하여 관리 해 볼 수 있을 것이다.

4.  선수학습을 참고하여 FND를 다루는 법을 먼저 익혀보고, 아래 코드에서 처럼, 배열과 for 구문을 이용하여 FND를 좀더 세련되게 코딩하는 법에 대해 숙지 하면 좋다. 

5. 건조,습함의 정도를 FND로 0~9 사이 10단계 값으로 나타 내었으나, 좀더 정밀하게 0~F 사이값인 16단계로 표시해 볼 수 있다. 이를 개인연습 차원에서 해본다면 코딩능력 향상에 많이 도움이 될 것이다.

 

▶ 프로그램 코드 및 설명 : 

/* Auto Water Pot - 자동 물공급 화분 with FND */

#define A0Pin 0

int sensorVal = 0;

int pump = 13;

byte digits[10][7] = {

//  {a,b,c,d,e,f,g}   FND 핀 배열

    {1,1,1,1,1,1,0},      // 0을 출력

    {0,1,1,0,0,0,0},      // 1을 출력

    {1,1,0,1,1,0,1},      // 2를 출력

    {1,1,1,1,0,0,1},      // 3을 출력

    {0,1,1,0,0,1,1},      // 4를 출력

    {1,0,1,1,0,1,1},      // 5를 출력

    {0,0,1,1,1,1,1},      // 6을 출력

    {1,1,1,0,0,1,0},      // 7을 출력

    {1,1,1,1,1,1,1},      // 8을 출력

    {1,1,1,1,0,1,1},      // 9를 출력

};
void setup ( ) {
 Serial.begin(9600);
 
pinMode(pump, OUTPUT); 

 for (int i=2; i<9; i++) {

      pinMode(i,OUTPUT);    // 2~8번 포트 모두 출력 설정 

  }
}

 

void displayDigit(int num)   {    // FND 숫자표시 함수

  int pin = 2;
 
for (int i=0; i<7; i++)     {      
   
digitalWrite(pin+i, digits[num][i]);   

  }
}
void loop ( ) { 
 
int FNDVal=0;
 
sensorVal = analogRead(A0Pin);        // 토양센서값 읽어 저장

  Serial.print("Asensor = ");
 
Serial.println(sensorVal);                  // 0(습함) ~ 1023(건조)값 출력

  FNDVal = map(sensorVal,0,1023,9,0); // 습도값을 FND 출력값으로 맵핑
  // 매우습함 : 9,  매우건조 : 0

  displayDigit(FNDVal);                       // FND에 숫자를 표시한다.
 
// 습도 값에 따라 출력 처리 다르게 해줌

  Serial.print("FND Val =");

  Serial.println(FNDVal);

  if ( FNDVal >= 3) {   

    Serial.println(" Very Wet ! ");       

    digitalWrite(pump, LOW);      }

  //만약 건조하면 1초동안 펌프작동
  else if ( FNDVal < 3)  {

    Serial.println(" Very Dry ! ");   

    Serial.println("Pumping for 1 Second!");   

    digitalWrite(pump, HIGH);

    delay(1000);
 
}   
 
delay(3000);      //정보수집 시간(간격) 설정

}                             

 

▶ 실행 모니터링 영상 :  (시리얼 모니터)

(전체화면 보기로 보세요)

 

▶ 실행영상 :  

(전체화면 보기로 보세요)

아두이노로 스마트화분 만들기 with FND 디스플레이

(아래는 유튜브로 시청하기)

https://youtu.be/-kT_9XRJnxw

▶ 아두이노 파일다운 :

(다운받아서 압축을 풀어 사용하세요)

RasINO_AutoPotFND.zip
0.00MB

반응형
반응형

【 아두이노Proj#3아두이노 스마트 화분 만들기 Ver1

 

 아두이노를 이용해 스마트 화분을 만들어 보자~!

우선 핵심기능으로 토양습도센서로 흙의 습도 값을 측정하여 일정 수치이하로 떨어지면(수분이 마르면) 워터펌프를 작동하여 물을 공급해주는 기능을 구현해 보려 한다. 

 아울러 !

 [ FND를 부착하여 수분정도를 알려주는 스마트화분 버전(Ver. 2)여기를 참고  ]

 [ FND와 LCD를 함께 부착하여 수분정도를 알려주는 스마트화분 버전(Ver. 3)여기를 참고  ]

 

▶ 선수 학습 :

   1. [아두이노 센서#34]  토양 센서( YL-38) Sensor 다루기  ☜ (클릭)

 

토양습도센서 (YL-38 , YL-69) 세부 스팩

< 센서모듈과 수분탐침을 연결한 모습 >

 

 

 

 

 

 시중에 YL-38, YL-69 두 종류가 있다, 기능상의 차이는 없으며 핀배열이 조금 상이할 뿐이다. 여기서는 YL-38을 가지고 제작 하려고 한다. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 워터 펌프 스팩

 

 

 

 

 

 

 

 

 

 

 

 

< 워터펌프용 튜브 : 지름 6mm (외경:6mm, 내경:4mm) >

※ 위에 사용된 호수는 외경이 6 mm 이고 내경이 4mm 입니다. 그리고 펌프 출수구에 호수를 끼울때 호수를 출수구 바같으로 감싸듯 끼우게 되는데요, 펌프출수구의 외경이 7.4mm 됩니다. 이렇게 어느정도 역으로 크기 차이가 나야 호수가 수압에 의해 쉽게 빠지지 않습니다. 다만, 지금 정도의 차이에서, 끼워보니 상당히 빡빡했어요. 이럴때는 호수 내부에 물기를 살짝 묻혀서 끼워보면 조금 쉽게 끼워집니다.  ^^

 

▶ 실습 목표 :  

  1. [ 토양습도 센서에 대해 이해 할 수 있다. 

 2. [ 워터펌프에 대해 이해 할 수 있다. ]

 3. [ 토양 센서 값에 따라 펌프를 작동시켜 물공급 조절을 할 수 있다.]

 

▶ 실습 회로도면 :
  (이미지 클릭하면 확대 가능)

< 스마트 화분 연결 구성도 >

※ 위 회로에 대해 모터 작동이 원활 하지 않을 수 있고, 장시간 사용시 아두이노 보드에 무리가 갈 수 있어 아래 처럼 NPN타입의 TR과 저항을 추가하여 보강하였다.  가급적이면 아래 회로를 참조하여 구성해주면 좋을 것이다.

(TR은 NPN 타입의 ' 2SC 9013 '을 사용하였으나,   TR 타입이 NPN타입 이면 어떤 것이든 동일하게 사용 가능하다. ) 

- C9011과 C9012, C9013은 모두 핀 배열이 동일함( E B C)

- C1815는 핀배열이 E C B 임

[ 위 회로에서 주의 하셔야 할 것은  아두이노 회로에서 주로 사용되는 TR의 경우(2SA, 2SC타입)  NPN형 타입은 PNP형 타입과 마찬가지로 핀의 순서가 있으니 주의 하셔야 합니다. 

우선, 도면에 사용된 NPN형 TR은 2SC9011 이며, 라벨이 적인 면의 왼쪽을 기준으로 핀 이름이 
1.   2SC9011 :  - E B C -  순서로 되어 있고, 

2.   2SC1815 :  - E C B - 순서로 되어 있으니 반드시 확인 후 연결하세요. 

또한, 이외의 TR을 사용할 경우 미니 테스터기 혹은 인터넷 검색으로 핀 순서를 확인하여 도면대로 연결하시면 문제 없이 동작 할 거예요. ]

 

[ 추가로 위 회로의 모터 연결 방식은 장시간 사용하기에는 좀 무리가 따르며, 전원을 별도로 넣어 줄 수 있는 릴레이 모듈이나, L298 모터 드라이버 모듈을 연결해서 사용하시는 걸 권장합니다. 조만간 보강된 회로의 업로드 버전도 올려 볼게요. ^^; ]   

 

▶ 실습 절차  : 

1.   부품을 준비하여 위와 같은 회로를 구성한다. 

2.   물펌프는 물통 속에 담겨진다. 따라서 물펌프의 전선이 빠져나오는 부분은 필요한 경우 글루건 등으로 보강처리 할 필요가 있다. 

3.  우선 본 실험처럼 작은 물통을 준비하고, 간이 화분을 준비해서 실험을 해 본 후 실제 화분에 설치해보면 좋을 것이다. 또한 필요한 경우 센서를 두 개 이상 설치할 수도 있고, 두개의 화분을 하나의 보드로 연결하여 관리 해 볼 수 있을 것이다.

4.  다음 버전에서는 수분 값 등을 FND 혹은 LED, LCD 등을 부착하여 표시해보려고 한다. 

 

 

▶ 프로그램 코드 및 설명 : 

 

/* 스마트 화분 만들기 [코딩]  */

#define A0Pin 0

int sensorVal = 0;

int pump = 13;

void setup ( ) {
 Serial.begin(9600);

 pinMode(pump, OUTPUT);

 }

void loop ( ) { 

  sensorVal = analogRead(A0Pin);    //토양센서 센서 값 읽어 저장

  delay(1000);

  Serial.print("Asensor = ");

  Serial.println(sensorVal);  // 0(습함) ~ 1023(건조)값 출력

  // 습도 값에 따라 출력 처리 다르게 해줌

  if ( sensorVal <= 900) {   

    Serial.println(" Very Wet ! ");       

    digitalWrite(pump, LOW);   

  }

 else if ( sensorVal > 900){

    Serial.println(" Very Dry ! ");   

    digitalWrite(pump, HIGH);

    Serial.println(" Pump On for 1 Second!");   

    delay(1000);

  }   

  delay(3000);   // 정보수집 시간(간격) 설정

}

▶ 실행영상 :  

(전체화면 보기로 보세요)

 

(아래는 유튜브로 시청하기)

https://youtu.be/GlYIry2jga8

▶ 아두이노 파일다운 :

(다운받아서 압축을 풀어 사용하세요)

AutoWaterPot.zip
0.00MB

 

반응형
반응형

【 아두이노 Proj#2】 라인트레이서 자동차 만들기 L298N모듈)

 

 적외선 센서를 이용하여 바닥에 그려진 라인을 따라 이동하는 RC카를 만들어 보자. 

 

▶ 선수 학습 :

1. (기초) #24 DC 모터 제어 하기 4 (L293 & H브릿지 참고 강좌 클릭
2. (센서) #2 적외선(근접)센서 TCRT5000(TCRT5000 참고 강좌 클릭
3. (센서) #24 L298N 모터 모듈활용한... (L298N 모듈 참고 강좌 클릭   
4. (응용) #1 초음파센서로 자동차 만들기 (자동차 구동이해)  강좌 클릭

 

▶ 라인트레이서 완성 모습

 

▶ 라인트레이서 동작 원리

 

 이와 같은 센싱 역할을 하는 센서가 바로 아래 소개 되는 TCRT5000센서이며 이를 사용하기 편하게 모듈화 한 것이다.

 

▶ 실습에 사용되는 부품 스팩 ( TCRT5000)

 

 TCRT 5000은 적외선 방식이어서 적외선 센서로 불리지만, 가깝고 짧은 거리에 사용되기 때문에 근접센서로도 불린다. 

 TCRT 5000 모듈의 상세한 사용 설명은 선수학습 '2.번'을 참고 

 

 

▶ 실습에 사용되는 부품 스팩 ( L298N ) 

 

 모터 모듈의 상세한 사용 설명은 선수학습 '3.번'을 참고
 
 

▶ 실습 목표 :  

1. L298N 모듈에 대해 이해하고 모터를 연결하여 사용하는 방법에 대해 익힌다.

2. 적외선 센서(TCRT5000)의 작동방식과 활용하는 법을 익힐 수 있다.

4. 검은색 라인위를 따라 이동하는 라인트레이서 로봇을 구현할 수 있다. 

 

 

※ 전원 공급은 건전지를 사용할 수도 있지만 , 요즘 많이 보유하고 있는 휴대폰보조베터리를 사용해도 된다.  소형 보조 베터리 사용시 장점은, 건전지보다 장시간 플레이가 가능하며, 언제든 손쉽게 재충전이 가능하여 건전지 교체비용을 줄일 수 있다. 

 

▶ 실습 회로도면 1 (기본회로):

  (이미지 클릭하면 확대 가능)

※ 주의!! 위 이미지에서 아두이노에 연결된 붉은 선이 5V가 아니라 Vin으로 연결 되어야 합니다!!!

※ 실습회로 도면 1에 보면, 9V 건전지는 아두이노쪽에 전원공급용으로 쓰였구요. L298N모듈에 보면, +5V~(모터, 별도전원) 이라고 되어 있는 부분에는 5V이상 되는 전원을 따로 넣어(연결) 주라는 의미에요.   
그래서, 건전지를 두 개(가지) 사용해야 모터가 잘 돌아갑니다. 

 

▶ 실습 회로도면 2 (확장회로):

  (이미지 클릭하면 확대 가능)

 

 ※ 기본 회로로 동작이 확인 되면 위 그림 처럼 마치 자동차의 헤드램프 처럼 라이트가 들어오도록 LED와 저항을 추가 할 수 있으며, RC카의 전원을 켜고 끄기 쉽도록 슬라이드 스위치를 달아 놓았다.  (토글 스위치를 사용하여도 무방)

 

▶ 회로 연결 쉽게 따라하기 (영상) :

 

(영상을 확대해서 플레이해서 보세요)

 

 

▶ 실습 절차  : 

 
1.    위 회로 연결도를 참고하여 부품들을 연결한다
2.    DC 모터의 연결선 방향은 우선 연결 후 프로그램으로 작동시켜보고 방향이 반대가 될 경우 다시 바꾸어 연결하면 된다.
3.    만약 가지고 있는 모터의 용량이 비교적 클 경우 아두이노 전원만으로는 동작이 어려울 수 있으니 회로도에서 처럼 별도 전원을 인가해주면 동작이 잘 될 것이다. (※ 모터 관련 회로에서 대부분의 동작 문제는 모터에 공급되는 전력이 충분치 않아 발생한다) 
 
5.   전원 하나로 아두이노와 DC모터를 포함한 L298모듈 둘 다를 돌리기에는 한계가 있다따라서 아두이노와 DC모터 모듈 전원을 각각 공급해주어야 하며이때 그라운드(GND) 공통으로 연결해주면 된다.  (속도가 빠르지는 않지만 휴대폰 보조베터리를 연결하면 하나의 전원으로 구동이 가능하다)
 
6.  모터 모듈 전원은 최소 5V이상, 모터용량에 따라 넣어 주면 되는데, 모터 구동에는 전압보다 전류가 중요한 역할을 하게 된다실험을 해보면모터모듈 전원으로 9V 베터리를 연결 할 때 보다, 1.5V X 4개 (6V)를 연결할 때가 훨씬 잘 동작될 것이다.(4개의 건전지에서 전류가 충분히 공급 되기 때문)
7.   TCRT5000 센서 동작에 문제가 있다면, 센서에 달려 있는 가변저항을 소형드라이버 등으로 돌려서 측정가능한 거리값을 조절 해보기 바란다. 
8. '라인'은 방바닥에 두툼한 검정색 혹은 짙은색 (종이)테이프 등으로 모양을 만들어도 잘 작동한다.
 
 

 

 

▶ 프로그램 코드 및 설명 : 

/* 라인트레이서(Line Tracer) 프로그램       */
/* by RASIno , http://rasino.tistory.com  */


#define IN1 8#define IN2 9#define IN3 10#define IN4 11int leftLineSensor =  12;      // 라인트레이서 왼쪽 센서

int rightLineSensor = 13;      // 라인트레이서 오른쪽 센서

 

void forward() {      // 

전진 : 모터 두 개를 모두 정회전 시킴

      digitalWrite(IN1, HIGH);

      digitalWrite(IN2, LOW);

      digitalWrite(IN3, HIGH);

      digitalWrite(IN4, LOW);    }

 

void back() {         // 

후진 : 모터 두 개를 모두 역회전 시킴

      digitalWrite(IN1, LOW);

      digitalWrite(IN2, HIGH);

      digitalWrite(IN3, LOW);

      digitalWrite(IN4, HIGH);   }

 

void left() {         // 

좌회전 : 오른쪽 모터만 정회전 시킴

      digitalWrite(IN1, LOW);

      digitalWrite(IN2, LOW);

      digitalWrite(IN3, HIGH);

      digitalWrite(IN4, LOW);  }

 

void right() {      // 

우회전 : 왼쪽 모터만 정회전 시킴

      digitalWrite(IN1, HIGH);

      digitalWrite(IN2, LOW);

 

      digitalWrite(IN3, LOW);

      digitalWrite(IN4, LOW);   }

 

void stop() {       // 

정지 : 2개의 모터 모두 회전 멈춤

      digitalWrite(IN1, LOW);

      digitalWrite(IN2, LOW);

      digitalWrite(IN3, LOW);

 

      digitalWrite(IN4, LOW);  }

 

void setup( )  {

  pinMode(IN1, OUTPUT);     // A 모터 1

  pinMode(IN2, OUTPUT);     // A 모터 2

  pinMode(IN3, OUTPUT);     // B 모터 1

  pinMode(IN4, OUTPUT);     // B 모터 2

  pinMode(leftLineSensor, INPUT);

  pinMode(rightLineSensor, INPUT);  

}

 

void loop( ) {

 

// 만약 양쪽 센서가 모두 선 미감지’(반사신호’OK’) 경우 : 전진

if (!digitalRead(leftLineSensor) && !digitalRead(rightLineSensor)) {

  forward();  

 }  

 

// 만약 왼쪽 센서만 선감지(반사신호X)’ 경우 :  좌회전

else if (!digitalRead(leftLineSensor) && digitalRead(rightLineSensor)) {

  left();  

 }   

 

// 만약 오른쪽 센서만 선감지(반사신호X)’ 경우 :  우회전

else if (digitalRead(leftLineSensor) && !digitalRead(rightLineSensor)) {

  right();

 } 

 

  // 만약 양쪽 센서 모두 선감지(반사신호X)’ 경우 :  정지

else if (digitalRead(leftLineSensor) && digitalRead(rightLineSensor)) {

 

  stop();  

 } 

 

}

◈  모터 A, B가 동시에 시계방향으로 돌면 전진, 반시계 방향이면 후진이고, 
한 쪽바퀴만 돌리거나 두 개의 바퀴를 서로 반대로 돌리면 좌회전 혹은 우회전이 된다.  

 이를 함수 형태로 만들고 메인 루프에서 적절히 함수들을 호출해서 사용하도록 하였다.  라인트레이서의 동작을 좀더 다양하게 꾸밀 수 있는데, 바닥의 라인에 따라 되돌아 나오기 등등 여러 형태로 프로그래밍 해 볼 수 있다. 

▶ 실행영상 :  

(전체화면 보기로 보세요)

 

 

 

 

 

 

 

 

▶ 아두이노 파일(다운) :

LineTracerRC-CAR.ino
다운로드

 

 

▶ 동작이 안 될 때 :

아래 사항을 하나씩 살펴보세요. (위 글 내용에도 강조했지만 다시 정리해드리면)

 

1. 회로 연결을 꼼꼼하게 한번더 살펴 보세요. 분명 회로도 보고 하셔도 어디 한 두 군데 잘못연결되면 동작되지 않습니다. 

2. 모터가 들어가는 회로에서 모터 동작이 이상하거나 잘 안되는 원인의 대부분은 전력부족이에요.   전력 중에서도 전류가 충분하게 공급되어야 하죠. (전압보다 전류가 더 중요해요)

실습회로 도면 1에 보면, 9V 건전지는 아두이노쪽에 전원공급용으로 쓰였구요. 
L298N모듈에 보면, +5V~(모터, 별도전원) 이라고 되어 있는 부분에는 5V이상 되는 전원을 따로 넣어(연결) 주라는 의미에요.   그래서, 건전지를 두 개(가지) 사용해야 아마 제대로 돌아갈 거예요. 

건전지 하나로는 보통 겨우 겨우 돌아가거나 제대로 안 돌아 갈 수 있어요. 

그리고, 9V 건전지는 전압은 높아보이지만 전류가 약한 타입이라서 아두이노 본체 전원으로는 좋은데, 모터쪽 전원으로는 부적합해요.  그래서 모터쪽 전원으로는 AA(1.5V)건전지 4개를 직렬연결해서 6V정도로 만들어 공급해주면 좋구요,  아니면, 18650(3.7V) 두 개를 직렬(7.4V) 연결한 걸 공급해주면 됩니다.  얘네들은 전류가 쎈 건전지라서 모터가 잘 돌아가요. 

그리고, 스위치를 추가한 회로 도면 2번(확장회로)에도 1번과 같이 모터쪽 전원과 따로 분리해서 전원을 이중으로 넣어주면 됩니다.

반응형
반응형

【 아두이노 Proj#1】 초음파센서로 자동차 만들기 L298N모듈)

 지난 시간 L298모터 드라이버 모듈을 활용하여 초음파 센서에 반응하여 모터를 구동시키는 실습을 해보았다. 이제 본격적으로 초음파 센싱으로 작동되는 자동차를 만들어보려 한다.  또한 초음파 센서쪽에 서보모터를 부착하여 좌우의 장애물의 유무를 파악하여 장애물이 없는 쪽으로 움직일 수 있도록 하였다. 

▶ 선수 학습 :

1. (기초)#24 DC 모터 제어 하기 4 (L293 & H브릿지 참고)   강좌보기클릭  2(기초)#28 서보(Servo) 모터 제어 하기 1 (서보모터이해)    강좌보기클릭  3(기초)#29 서보(Servo) 모터 제어 하기 2 (서보모터이해)    강좌보기클릭  
4. (센서)#24 초음파센서 경보회로with LCD (초음파 센서이해)    강좌보기클릭


▶ 실습에 사용되는 부품 스팩 ( L298N ) 

 모터 모듈의 상세한 사용 설명은 선수학습 4.번을 참고


▶ 실습 목표 :  

1. L298N 모듈에 대해 이해하고 모터를 연결하여 사용하는 방법에 대해 익힌다.

2. L298N 드라이버 모듈에 별도의 전원이 필요한 경우에 대해 이해 할 수 있다. 

3. 초음파 센서를 비롯한 센서의 신호를 체크하여 N298모듈에 연결된 모터들을 제어 할 수 있다. 

4. 초음파로 장애물을 확인하고 회피기동 프로그램을 작성하여 스스로 움직이는 RC카처럼 구성해볼 수 있다. 


▶ 실습 회로도면 (서보모터 부착회로):

  (이미지 클릭하면 확대 가능)

 ※ 아두이노에 공급되는 전원과 별도로 모터에도 전원을 인가해주면 좋을 것이다.(단일 전원 구성도 가능하나, 바퀴가 힘있게 굴러가지 못하고 작동시간도 매우 짧기 때문에 모터 구동(모듈)쪽에 별도의 전원을 넣어 주는 것이 좋다) 


※ DC(직류) 방식의 모터는 작은 용량(소비전력이 낮은)의 것을 사용하면 되며,  기어가 포함된(기어드) DC 모터를 사용한다면 아두이노의 작은 출력으로도 충분히 제어가 가능하다. 만약 회로연결과 아두이노 프로그램에 문제가 없는데도 동작이 되지 않는 다면, 공급전력에 비해 너무 큰 용량의 DC 모터가 연결된 경우 일 수 있으니,  이런 부분들을 확인 해보면 될 것이다. 이때, 모터드라이버 모듈에 별도의 전원을 넣어주면 해결될 수 있다. 인가 가능한 전원은 5V~36V 사이값 이므로 이를 고려하여 모터를 선택하면 된다.



▶ 실습 절차  : 

1.    위 회로 연결도를 참고하여 부품들을 연결한다
2.    DC 모터의 연결선 방향은 우선 연결 후 프로그램으로 작동시켜보고 방향이 반대가 될 경우 다시 바꾸어 연결하면 된다.
3.    만약 가지고 있는 모터의 용량이 비교적 클 경우 아두이노 전원만으로는 동작이 어려울 수 있으니 회로도에서 처럼 별도 전원을 인가해주면 동작이 잘 될 것이다. (※ 모터 관련 회로에서 대부분의 동작 문제는 모터에 공급되는 전력이 충분치 않아 발생한다) 

5.   전원 하나로 아두이노와 DC모터를 포함한 L298모듈 둘 다를 돌리기에는 한계가 있다따라서 아두이노와 DC모터 모듈 전원을 각각 공급해주어야 하며, 이때 그라운드(GND) 공통으로 연결해주면 된다.

6.  모터 모듈 전원은 최소 5V이상, 모터용량에 따라 넣어 주면 되는데, 모터 구동에는 전압보다 전류가 중요한 역할을 하게 된다실험을 해보면, 모터모듈 전원으로 9V 베터리를 연결 할 때 보다, 1.5V X 4(6V)를 연결할 때가 훨씬 잘 동작될 것이다.(4개의 건전지에서 전류가 충분히 공급 되기 때문)
7. 서보모터는 180도 왕복 회전할 수 있는 것을 사용한다.
8.   초음파 센서에 손이나 장애물을 대어 보아서 모터제어가 잘 되는지 확인한다.

▶ 프로그램 코드 및 설명 : 

/*  L298N 모터 모듈을 활용한 초음파 센서 제어 회로 */

int distance;             /*  초음파센서로 모터제어 하기  */

int triggerPin = 13;

int echoPin = 12;

#define IN1 8  // L298모듈의 제어 신호 입력 핀 번호 지정

#define IN2 9

#define IN3 10

#define IN4 11

float distance;          // 초음파 센서 거리값 변수

int servoPin = 2;     // 서보모터 연결 포트

Servo servo;


void forward() {      // L298 제어용 전진 함수

      digitalWrite(IN1, HIGH);

      digitalWrite(IN2, LOW);

      digitalWrite(IN3, HIGH);

      digitalWrite(IN4, LOW);    }


void back() {         // 후진

      digitalWrite(IN1, LOW);

      digitalWrite(IN2, HIGH);

      digitalWrite(IN3, LOW);

      digitalWrite(IN4, HIGH);   }


void left() {         // 좌회전(왼쪽모터 멈춤:오른쪽모터 전진)

      digitalWrite(IN1, LOW);

      digitalWrite(IN2, LOW);

      digitalWrite(IN3, HIGH);

      digitalWrite(IN4, LOW);  }


void right() {      // 우회전(왼쪽모터 전진:오른쪽모터 멈춤)

      digitalWrite(IN1, HIGH);

      digitalWrite(IN2, LOW);

      digitalWrite(IN3, LOW);

      digitalWrite(IN4, LOW);   }


void stop() {       // 정지

      digitalWrite(IN1, LOW);

      digitalWrite(IN2, LOW);

      digitalWrite(IN3, LOW);

      digitalWrite(IN4, LOW);  }


void setup( )  {

  Serial.begin(9600);

  pinMode(triggerPin, OUTPUT);  // 트리거 핀을 출력으로 설정

  pinMode(echoPin, INPUT);          // 에코 핀을 입력으로 설정

  servo.attach(servoPin);               // 서보모터 연결 지정

  servo.write(90);                            // 초기값으로 정면 응시

  delay(1000);               

}


float getDistanceCM() {      // 초음파 센서 거리 측정 함수(단위:cm)

  digitalWrite(echoPin, LOW);

  digitalWrite(trigPin, LOW);

  delayMicroseconds(2);

  digitalWrite(trigPin, HIGH);

  delayMicroseconds(10);

  digitalWrite(trigPin, LOW); 

  distance = pulseIn(echoPin, HIGH)  / 58;  //거리값 계산 후 저장

  return distance;

}


// 거리값 정확도를 위한 평균치 계산 함수(1회이상~ 10회미만으로 조정해보기)

float getStableDistanceCM() {

  int CmSum = 0;

  for (int i = 0; i < 8; i++) {

    CmSum += getDistanceCM();  //, 'sum = sum + cm' 동일

   }

  return CmSum / 8;

}


void loop( ) {

   if ( getStableDistanceCM() < 25 ) {  // 25cm이하 장애물 감지

         stop();

         delay(300);     
         servo.write(180);      // 서보모터 좌회전 후 측정 거리값 변수에 저장     

        delay(500);

        int leftDistance = getStableDistanceCM();

        delay(300);

        servo.write(0);           // 서보모터 우회전 후 측정 거리값 변수에 저장

        delay(500);

        int rightDistance = getStableDistanceCM();

        delay(300);

        servo.write(90);        // 서보모터 중앙으로 원위치

        delay(500);

        back();                         // 0.5초간 후진

        delay(500);

       if (leftDistance > rightDistance {

           left();

       } else {

          right();
       } 

      delay(500);

  }   else {                            // 장애물 감지가 안 될 경우 전진

      forward();

      }

   }

◈  모터 A, B가 동시에 시계방향으로 돌면 전진, 반시계 방향이면 후진이고,

  한쪽바퀴만 돌리거나 두 개의 바퀴를 서로 반대로 돌리면 좌회전 혹은 우회전이 된다.   이를 함수 형태로 만들고 메인 루프에서 적절히 함수들을 호출해서 사용하도록 하였다. 또한 거리값을 계산하는 부분을 함수로 만들었다(getDistanceCM()) , 그리고 얻어진 거리값을 초음파로 측정할 때 오류가 날 수 있기 때문에 1~8회 사이 몇 번 측정후 평균을 내면 편차가 큰 오류값은 걸러낼 수 있고 이를 함수로(getStableDistanceCM()) 만들었다.  

 위 프로그래밍에서는 기본 전진 기동을 하다가, 물체가 20cm 이내로 감지되면 정지를 시키고, 초음파 센서에 달린 서보모터를 좌, 우로 돌려보고 거리값을 각각 측정하여 물체가 없거나 물체와의 거리가 더 먼쪽의 방향으로 회전(좌회전 또는 우회전) 하도록 프로그래밍 한 것이다. 


▶ 실행영상 :  

(전체화면 보기로 보세요)


※ 자동차 몸체는 영상에 있는 것이 아니어도 좋다. 두 바퀴를 안정적으로 고정시킬 수 있는 몸체와 앞 뒤로 기울어지지 않게 볼캐스트(볼 베어링)를 종이박스나, 폼보드 등에 부착해서 직접 만들어도 된다. 


▶ 아두이노 파일(다운) :

UltraSonicRC-CAR_Servo.ino






반응형